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Abstract

This study proposes a recursive estimation algorithm for the restricted exponential autore-
gressive (EX PAR) model. The recursive least squares (RLS) theory is based on the matrix
inversion lemma. It is shown that the RLS estimators are asymptotically efficient. A short

simulation study shows the high performance of the obtained estimators.
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1. Introduction

The most standard estimate technique for getting a good estimator with a given sample size
is the least squares approach (LS). Nevertheless, the need to treat progressive size has gotten
more and more important. In fact, handling variable-sized series is necessary in many fields,
such as signal processing, control, and instantaneous applications. An elegant approach to
recursive identification is to derive it from off-line estimation, so the LS method can be
carried out recursively. For more details, see Ljung and Soderstrom (1983). The current
estimator is derived by incorporating new data into the previous estimator, which allows for
continuous refinement and potential improvements in accuracy. The main tool for obtaining
the RLS algorithm is the matrix inversion lemma, which leads to a formula without matrix
inversion and offers excellent performance in terms of computation and memory space.

The RLS method was successfully applied to many models of time series; one of them is

the EX PAR model; see Xu et al. (2019) and Xu et al. (2020). This model was introduced
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by Ozaki (1980) and can exhibit nonlinear phenomena like limit cycles, jump phenomena,
and non-normality. Due to the nonlinearity of the model, the obtained RLS algorithm was
nonconventional, and nonlinear optimization was used. Precisely in the context of real-time
estimation, Shi and Aoyama (1997) suggested a direct estimation from the data for the
nonlinear parameter. Messaoud et al. (2006) utilized this method to model the vibrations
and disturbances taking place during drilling. The Restricted EX PAR model is therefore
derived. It is worth noting that the restricted model is linear for the unknown parameters
but still nonlinear with regard to the variable and retains all of its nonlinear behavior. The
approach will perform well if the nonlinear parameter of the model is known from earlier
research or can be readily determined in the context of real-time data.

In this paper, we present an online recursive least squares algorithm for the estimation of the
restricted EX PAR model. This approach is based on the matrix inversion lemma, which
avoids matrix inversion and is good in terms of effective real-time computing and small
memory requirements.

The structure of the paper is as follows: In Section 2, we review the definition and LS
estimation for the restricted EX PAR(p) model. We give the RLS estimators and prove
their asymptotic properties under mild conditions in Section 3. Finally, a short simulation
study is given in Section 4.

2. Restricted EXPAR(p) process

The restricted exponential autoregressive EX PAR (p) process is given by the formula

p

V=3 (Bu + fagexp (—Y2)) Vi 500t )

j=1
where {e;; t € Z} is i.i.d (0, 0?). The slope parameter, v > 0, is known. A heuristic deter-
mination of it from data

log €

=%
max Y;?’
t

where € is a small number.(cf. Shi et al. (2001)).

Let 0 = (611,021,...,01,,02,) € R, the vector of unknown parameters, and ¢ (t) =
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(Y;_l,Y;_l exp (—va_l) v Yoy, Y exp (—VYE_I))/. Equation (1) can be written in re-
gression form

Yi=0o(t)+e, tel, (2)

We make the following assumptions:

Al : We suppose that the process is strictly stationary. If this assumption is violated,
alternative methods such as using time-varying parameters or incorporating non-stationary
components may be considered.

A2 : The white noise {&;; ¢ € Z} is such that E (¢}) < oo, for any ¢ € Z which means that
FE (Y}) < co. In case this assumption is violated, robust estimation techniques or methods
requiring weaker moment conditions could be employed.

The least squares (LS) estimator minimizes the equation error with respect to 6

Velh) = -3 (- #p (1)

t=1

where n is the size of the data. The criterion is quadratic in 6, thus

0, = (Zs&(t) sO(t)') (Zw (t)Yt> : (3)

If @ is the true value, we can prove that the LS estimator En converges asymptotically to 0

and
NG (@L . 9) 4 N (0,027,
where I' = E (¢ (t) ¢ (t)') and %, denotes convergence in distribution.

3. Recursive least squares estimation algorithm

Let Y3, ...,Y; denote the available observations, until time ¢, of the restricted EX PAR(p)
model. The adopted optimality criterion in RLS estimation is the mean square error. Thus,

the problem consists of finding the argument that minimizes

Vi6) =5 3 (i~ e ()" )

k=1
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The proposition below gives the RLS algorithm, which provides optimal estimators for the
restricted FX PAR.

Proposition 1

The RLS algorithm for estimating the parameters of an EX PAR(p) model is given by the

following system of recurring equations:

6, =10 Pr1p (1) "
0, =0, v 7 t
e SD(t)/Pt;DSO (t)+1 ( t/P -1 ( )) ; .
_ t t B
P=P - -1 (1) o (t) P

o () Poap (t) +17

A standard choice of initial values is Py = C.I and 0 (0) = 0, where C' is some large constant,
for example, C' = 10°, and I denotes the identity matrix.

Proof

From the objective function (4), the LS estimator 0, is given by

(Z (k)¢ (k)/> 0, = (Z ¢ (k) Yk) : (6)

Denote

it follows that
Ri=Ri1+et)e(t). (7)
After some straightforward modifications, one may derive the recursive equation using (6)
and (7)
bi=bBa+ R () (V-0 9 ). (8)
The algorithm (8) is not suited for computing because we must invert a p X p matrix in
each step, so we introduce P, = R;'. The matrix inversion lemma can be used to update P,
directly
(A+BCD) ' =A™ — A"'B(DAT'B+C) ' DA™Y,

see, for example, Ljung and Soderstréom, 1983, Lemma 2.1, p. 19. We obtain

 Pap()e(t) Py
¥ (t)/Pt—lSO (t)+1 '

b= P
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hence the algorithm (5) stating that the new estimate is equal to the previous estimate plus
the prediction error multiplied by a gain.

The following proposition states the asymptotic properties of the RLS estimator.
Proposition 2

Under assumptions Al and A2,

i) 0, — 6, almost surly for t — oo.

i) Vi (@ - 9) 4 N (0,070,

Proof

The RLS algorithm needs an initial value to start up, the estimates resulting from (8) are

then
0, = (Pg_l + Z o (k)@ (k’)l> (Po_l/e\o + Z o (k) Yk) , 9)

for P (0)_1 — 0, the recursive estimates are asymptotically similar to

0, = (Z@(k‘) P (k)'> (Zw(k‘) Yk) : (10)

that is, the recursive estimate becomes closer to the off-line estimate and has the same

asymptotic properties. Substituting Yj by (2) we obtain

b0+ (ESewow) (1 sma). o

a.s

From the ergodicity of ¥; and the independence between ¢ (k) and &y, we have £ 7, _ ¢ (k) g, 5
E (¢ (k)er) =0, then 7) is verified.

For ii), we have from (11)

—1
N 1< 1 <
((0-0)= |- Do) [— k
YagQ (tkzz@()@()> < : w()6k>,
the central limit theorem for martingale differences gives

1 t
Wzgp(k)ek 4 N (0,6°T),
k=1
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leading to the result by applying Slutzky’s theorem.
4. Simulation study
We simulate four restricted EX PAR(1) models with v = 1 and ¢ = 0.1 for the first three
models, and ¢ = 1 for the fourth model. The selection of parameters is based on ensuring
the stationarity of the models. The parameters are as follows:

*Model 1: 6 = (—0.9, —2)’

*Model 2: 6 = (0.7,1.5)’

*Model 3: 6 = (0.8, 1)’

*Model 4: 6 = (0.4,—0.9)".
We have added these additional models to provide a broader understanding of the estimator’s
performance under different parameter settings. The program has been written in R, and
we have used the RLS function in the MT'S package. Figures 1-8 show the behavior of
estimator means and variances for models 1 to 4. We can see clearly that the parameters
are very well estimated by the RLS algorithm and are consistent, the means converge to the

true parameters, and the variances converge towards zero.
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Figure 1: Mean of /O\t for model 1. Figure 2: Variance of ?O\t for model 1.
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Figure 3: Mean of /H\t for model 2.
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Figure 5: Mean of 515 for model 3.

Variance

Variance

w

o 4

o —

o

o

I= T T T T T T T
0 50 100 150 200 250 300

Time

© |

[}

o 7

=] T T T T T T T
0 50 100 150 200 250 300

Time

Figure 4: Variance of /H\t for model 2.
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Figure 6: Variance of @ for model 3.
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Figure 7: Mean of 6; for model 4. Figure 8: Variance of 6, for model 4.

5. Conclusion

In this study, the RLS estimators have been proposed for the restricted EX PAR model. The
algorithm will be suitable in the case where the nonlinear parameter of the model is known
(from previous studies) or fastly estimated in the case of real time data. The asymptotic
properties of the online estimators were established and a short simulation proved their high
performance.
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